
IoT Smart Mirror
Jeffrey Murray Jr.

M.S. Cybersecurity Engineering
University of Washington - Bothell, WA

Abstract—IoT devices are growing rapidly with consumer
products such as TVs, cameras, locks, lights, and many more.
Google, Amazon, Apple, and Microsoft have released some form
of organizing and controlling devices on the Local Area Network
via a mobile application and/or voice assistant. Devices that have
an embedded virtual assistant have limited security capabilities
for authorizing active users and executing commands. This work
contributes an open-source, Google Assistant SDK with Facial
Recognition. The Smart Mirror is cost-competitive and provides
similar functionality to current products on the market. Using
Google Cloud Platform, the device can respond to the user in
less than a second and handle local execution commands while
relying on existing infrastructure to control other smart home
devices.

I. INTRODUCTION

Smart Home Devices have become increasingly popular in
the last decade alongside the need to organize, connect, and
communicate with them. In the last 5 years, large companies
have released numerous products to address this need for
users, however, a problem remains. Personal Voice Assistants
embedded within smart home devices are triggered via wake
words, and the concern is that unauthorized users can access
sensitive data and/or control network-connected devices [12].

In recent years, Amazon and Google have proposed so-
lutions via voice recognition, face recognition, two-factor
authentication, and secret phrases or pins [2]. The application
of voice and facial recognition allows households with more
than one member to access personal information that does not
conflict with other users. The Smart Mirror approaches this
problem with a pre-trained facial recognition model running
on a Jetson Nano. It publishes login and logout events to the
Google Cloud Platform and a Raspberry Pi 4 acknowledges
the message. Once acknowledged this application will provide
personalized content and access to the embedded Google
Assistant and subsequent user data. The device integrates into
the Home Graph API provided by the Google Cloud Platform
which the user can access on their Google Home App.

This work proposes an open-source implementation of an
embedded Google Assistant activated by a local wake word
engine, Porcupine with custom user profiles authorized by
facial recognition. The application can also be controlled by
the Google Home App or other Google Assistant instances
to control the Smart Mirror. Section II provides a feature-
based comparison of similar devices on the market. Section III
discusses privacy concerns with existing smart home devices.
Section IV proposes the design and implementation of three
modules, cloud software, and facial recognition. Section V
evaluates the final product on the responsiveness to authen-

tication events. Section VI summarizes the key points and
takeaways of this implementation.

II. RELATED WORK

There has been widespread adoption and integration of
Virtual Personal Assistants (VPAs) in the last decade with
Amazon and Google taking the lead in this growing market [6].
In this section, the Smart Mirror features and functionalities
will be compared to similar devices available in the market.
The devices shown in Figure 1 demonstrate the market share
with an estimated price, year of product release, facial recog-
nition option, the type of voice assistant integrated, and the
key features.

A. Google Assistant

Google debuted their digital assistant at the Google I/O
Developer conference in 2016, and rapidly grew each year
to include more user-focused features such as Voice Match
and Face Match to deliver more personalized content. Along
with this, Google Home has provided a developer-friendly
cloud service to incorporate almost any device, going as far
as embedding the assistant service into the device’s source
code. The integration options have paved the way for the
rapid growth of compatible devices with Google Assistant
and Google Smart Home. The embedded assistant requires
a Speech-to-Text and Google Assistant API to be enabled in
the cloud, and out of the box, it does not include any way to
trigger the assistant via voice commands.

However, Google has released products with their assistant
such as Pixel phones, Chromecast, and Nest Smart Home.
Only recently, Google has released Face Match to personalize
user content displayed on compatible products. It works along-
side Voice Match to drive the functionality of identifying the
user speaking to the device. However, Google notes that this
is not a security feature, rather automating content view based
on user’s routine patterns. It cannot differentiate between a
photo of a user and the user standing in front of the device.

The Google Nest Hub Max includes a webcam and micro-
phone for users to video chat with friends and family, and
optionally can enable Face Match and Voice Match if the
device is in a shared household where personalized content
is desired. Not to mention the previous generation, the second
generation of the Nest Hub smart display does not include a
webcam, but it can make voice calls and utilize Voice Match
to personalize content. Both devices can handle local intents
such as controlling the volume, media playback, and display
content. For both devices, Face Match and Voice Match are



Fig. 1. Feature Comparison of similar products on the market.

trained locally on the device and sent to the cloud, opposed
to the Smart Mirror which does local training and storage for
both the Wake Word and Facial Recognition.

B. Amazon Alexa

Amazon released the first integration of Alexa in 2014
with the Amazon Echo smart speaker to provide results for
web searches, ordering products on Amazon Marketplace, and
limited capability for IoT Smart Hub to control other devices
via the user’s voice. The Echo Show was the first Smart Home
Display to debut in 2017 with their newest iteration in 2022,
the Echo Show 15. There have been many iterations of the
Echo Show, but more recently the inclusion of Visual ID to
personalize the user experience.

The Visual ID function will also be released for the Echo
Show 8 and Echo Show 10. Opposed to Google, images of user
faces will be stored and trained on locally. Like Google and
the Smart Mirror, facial recognition cannot discern a user from
a photo of them, so it cannot be justified as a secure method of
authorizing users. Instead, Amazon is using this technology to
personalize content such as calendar, upcoming events, and to
do lists. All of Amazon’s 2021 smart home displays in Figure
1 are compatible with upcoming rollout of Visual ID to locally
identify a user based on their face to personal content while
in a household with more than one member.

In 2019, Amazon unveiled their Amazon Voice SDK [1] to
enable developers and 3rd party companies access to embed
the assistant to various applications. AVS is an all-inclusive
embedded assistant, for it includes a wake word engine and
seamless authentication for users and developers. However, the
integrated wake word utilizes a shared data stream with the
Alexa Communication Library which forwards the processed
input to cloud services. The concerning aspect of this data flow
is that the wake word engine requires connection to the internet
[8]. Comparatively, the wake word engine on the Smart Mirror
does not require an internet connection, and thus does not pose
a privacy concern.

III. PROBLEM STATEMENT

With Smart Home Devices gaining much popularity in
recent years, a shared flaw of the current market is in the
Wake Word Engine, a constantly listening data stream awaits
a trigger word to handle a user command. As this wake word
is always listening poses itself as a privacy concern [8], [12]
and security issue for unauthorized users to execute commands
on the device [3].

The proposed Smart Mirror utilizes open-source software
to address these concerns with competing devices on the
market. Embedded smart home devices currently listen for the
incoming request, and the user has no control over where the
data is going. In this regard, the Smart Mirror is equipped with
a local wake word engine that does not transmit any data. This
approach ensures that there are no saved recording or analytics
being captured while inactive.

The system relies on Facial Recognition from another device
to only allow authorized users access to the embedded assistant
and to sensitive user data. Other devices will activate when any
user says the wake word and only after tries to personalize the
displayed content and/or verbal response. The Smart Mirror
performs the opposite operation where the only pre-authorized
users have access to the embedded assistant where they can
access their sensitive data and control other devices. For per-
formance, the overall design focuses on resource consumption
by utilizing two devices, Raspberry Pi 4, and Jetson Nano
2 GB, to share the required computing resources to run this
system. To draw an evaluation for the proposed system, the
Smart Mirror will be analyzed on its responsiveness to user
commands and authentication latency.

IV. DESIGN AND IMPLEMENTATION

The overall architecture and data flow of this system has
been illustrated in Figure 2. The Smart Mirror software
contains three sub modules and require the prefix ‘MMM’
designated for extensions of the Magic Mirror repository [10].
This open-source, modular smart mirror platform provides
a bare bones user interface running as a NodeJS electron
application. Each sub module is dependent of the others,
for each module communicates with a single component in



Fig. 2. Smart Mirror Data Flow

the cloud. For the back-end service provider, Google Cloud
Platform handles user requests to generate directives with the
Google Assistant API, act as a broker for incoming login
and logout events with Google Pub/Sub API and maintain the
Smart Mirror state and actions with Firebase.

A. Software

1) Google Assistant: This module was forked from MMM-
Porcupine [9] by Alex Sikand that contained depreciated
version of Porcupine and limited functionality. MMM-
GoogleAssistant extended the previous work by embedding the
Google Assistant SDK [4] and importing the most recent Por-
cupine deployment. Porcupine [6] is a pre-trained, local wake
word engine that does not require any network connectivity.
It has 14 pretrained wake words including but not limited
to: “Jarvis”, “Alexa”, “Hey Google”, and “OK Google”. The
open-source software allows for multiple wake words at the
same time and provides a fluid handoff to trigger the Google
Assistant SDK. As it is a constantly listening data stream, it
decodes the bit stream in 1 second intervals searching for the
desired wake work. Once detected, it closes the stream and
activates the Google Assistant SDK.

The Google Assistant SDK requires the user to authenticate
themselves on the platform to access the Speech-to-Text,
Google Assistant, and Home Graph APIs. All services have
access to sensitive user data and profile settings. The Speech-
to-Text API translates audio data to text and is known as a
transcription, and once the user stops talking triggers an “end-
of-utterance” command on the Google Assistant SDK. The

intent is processed in the cloud via the Google Assistant API
and generates a directive within the cloud platform. Intents
are actionable items that the user would like to execute, and
the back-end system handles directives for maintaining the
device’s state, accessing other devices via Home Graph API,
and requesting other services such as games or queries with the
Google Assistant API. For directives that are seeking to mod-
ify or seek resources such as other smart devices or the current
device, an intent has a design pattern of “devices.action.XYZ”
where XYZ is a command.

The Home Graph Intent design pattern includes the follow-
ing commands: SYNC, QUERY, DISCONNECT, EXECUTE.
The sync intent requests the list of devices associated with the
given user and their capabilities, and it is usually triggered
during account linking via OAuth 2 token generation. The
sync can also request to update the attributes and traits of the
device, so that when the Firebase Function is updated will
trigger changes in the Realtime Database. The query intent
requests the current state and status of the device, and it acts
as a read only action. The disconnect intent informs the back-
end service that the user has unlinked, or unauthorized, access
to the user’s data.

For an execute intent the Smart Mirror handles it locally
with the Assistant SDK and updates the Firebase Realtime
Database. From other Google Assistants connected to the same
user account accesses the web hook hosted by the Firebase
Function. A single execute intent can only target one device
at a time. Such that, when the user says, “Turn off the
lights”, N number of requests are sent for each light in the



room. For the implementation of execute, the Assistant SDK
identifies “action.devices.EXECUTE” in the intent parameters
and handles the request locally by passing the command to
MMM-Device Control.

2) Device Control: This module is responsible for request-
ing the current status of the Smart Mirror from the Firebase
Realtime Database. These monitors, known as daemons, ping
the server every three seconds, and if the status has changed,
runs a command on the Raspberry Pi. This feature is required
for the user to control the device from other Google Assis-
tant instances. The traits of the Smart Mirror are Volume
and OnOff. Each request is handled asynchronously by each
daemon: Volume, Display, and Mute. Volume and Mute must
be handled separately, as they are two different intents for
the Google Assistant API and access different states in the
Realtime Database.

The Volume daemon stores a local integer variable with
a value between 1 and 100, it compares the current state
and state in the database, if they do not match, updates
the local state to match and executes a command. On the
raspberry pi, to change the volume via the command line,
”alsa mix” can modify the volume level. A typical request
will contain isPercentage within the body of the request. If
true, the command uses the raw value in the volumeLevel
key, otherwise the value is a scale within 1 to 10. The
corresponding percentage is then stored locally and updated
in the database.

The Mute daemon checks the database value isMuted and it
is read only. When the user intends to mute the Smart Mirror,
the daemon executes the ”alsa mixer” to mute. No local value
is stored, for the Realtime Database stores two values under the
Volume trait: isMuted and Mute. Mute acts as a command and
isMuted reflects the changes of the command. When the user
intends to unmute the Smart Mirror, the Google Assistant API
updates the database isMuted value, and the daemon executes
the “alsa mixer” to unmute. Note that all mute and unmute
intents are not handled by the Assistant SDK, rather passed
to the Assistant API in the cloud platform to make changes to
the Realtime Database.

The Display daemon checks the database value under the
OnOff trait. The Smart Mirror screensaver can be controlled
with ”xscreensaver-command” and sets the screen to black
to appear turned off. The screensaver has been configured to
automatically turn on after thirty minutes of inactivity, and it
can be turned off when a user walks in front of the mirror
and a login event is published or the Realtime Database value
changes.

3) Profile Switcher: MMM-Profile Switcher [5] was forked
from Brian Janssen, and acts as a user session manager for
login and logout events. The schema of the profile switcher
attaches to each DOM object in the global configuration. For
example, the Google Assistant module can only be activated
when known users are recognized. The default page only dis-
plays the current time and date, but when a user is recognized,
the profile switcher enables all DOM elements associated with
the user.

The Profile Switcher must be pre-configured with names
of authorized users. For example, when a face is recognized
on the Jetson Nano, it sends a publish event with “User
Active”, the message is acknowledged by the Profile Switcher.
The module then broadcasts the change and activates one or
more DOM elements for the main user-interface based on
the config.json file. Each module and DOM element must be
labeled with a name or group, otherwise it will be enabled
by default. The transition from one user to another is almost
instantaneous, for every module and corresponding position is
static and this module just changes its visibility status.

4) Firebase Function: The function only interacts with
external parties such as the Google Home and other Google
Assistant instances on the user account. When deployed,
it will send a SYNC request to the Home Graph API to
ensure that both have an up-to-date copy of the Smart Mirror
traits and current state. This external dependency can be
deployed from any device, and it serves as a webhook for
Google Assistant and Home Graph APIs to interact with.
It hosts /login, /fakeauth, and /faketoken endpoints when a
user connects their Google account to the Smart Mirror. The
/reportstate, /requestsync, and /smarthome endpoints handle
incoming requests and reply with the Realtime Database values
for the corresponding device id. The schema of the Realtime
Database resembles the following parameters:

• Trait: OnOff
– State: on – True or False

• Trait: Volume
– Command: Mute – True or False
– State: isMuted – True or False
– Command: relativeSteps – 0 to 10
– State: volumeLevel – 0 to 100

Each trait has numerous attributes that are preconfigured with a
Firebase function that handles SYNC requests at the endpoint,
requestsync, to reply with the device’s traits, attributes, and
state. The report state endpoint handles incoming QUERY and
DISCONNECT requests.

5) Facial Recognition: This software runs as a standalone
application that is pretrained with DLIB with an accuracy of
99.38% from the benchmark Labeled Faces in the Wild [7],
[11]. It stores local encodings with OpenCV from labeled im-
ages and loads them upon initialization. This implementation
accesses the webcam’s data stream and looks for faces on
every other frame to lower the workload. When a known face
encoding is detected, it transmits a login or logout event based
on user state. The user state is stored locally as a Python
object. It also has a configurable user session variable, set to
ten seconds, where once a user enters, it will not send a logout
request for at least ten seconds. For communicating with
Google Cloud Platform Pub/Sub, the software only publishes
events via a service key stored as an environment variable.
The user session variable is a minimum logout threshold that
ensures that each logout event is at least ten seconds after a
login event. The login is handled instantly if no other users
are logged in. The ten second threshold is included in the



Fig. 3. Publish / Subscribe with User Session Lock of 10 seconds

evaluation showcasing why there must be some threshold to
not overflow the Smart Mirror.

B. Hardware and Resource Consumption

There are two main hardware components to create a facial
recognition smart mirror: Raspberry Pi 4 and Jetson Nano 2
GB. The Raspberry Pi runs the Magic Mirror software and
sub modules, and it has an external microphone and portable
monitor with a built-in speaker. This allows the user to interact
with Magic Mirror and control the device with his or her voice.
The Jetson Nano runs the facial recognition software and when
initialized loads or saves local face encodings, and has a USB
webcam plugged in.

In this design, resource consumption was a crucial consider-
ation of why the design includes two devices opposed to one.
The Magic Mirror software idles at about 60% CPU consump-
tion with a 4 core Raspberry Pi 4. The Facial Recognition in
Python uses around 50% of the Jetson Nano’s 4 core CPU and
caches the facial encodings consuming about 1 GB of RAM.

Both devices together allow plenty of overhead for process-
ing system requests and event driven requests. Furthermore,
each device is equipped with a fan to cool down the CPU
to avoid overheating. An extension to this work would be
monitoring the temperature for both devices and alert the user
when approaching a dangerous threshold, and power down the
devices.

V. EVALUATION

The contribution of this work focuses on the responsiveness
and length of user sessions. A quantitative metric for the
systems robustness is by measuring the time of login and
logout events. To set this experiment up, the Jetson Nano
outputs each published event with a current timestamp, and
on the Raspberry Pi, outputs each received event to a text file.
A python parser would concat both files and compare matching
events. The difference between each event is measured in
milliseconds and graphed over the duration of the experiment.
The Raspberry Pi 4 has a wireless network adapter, and the
Jetson Nano must be connected via Ethernet.

The environment consisted of the Jetson Nano connected
to the Raspberry Pi’s Ethernet adapter and forwarded a sub

Fig. 4. Publish / Subscribe with no User Session Lock

Fig. 5. Publish Events in 5 second intervals

network IP address via Network Address Translation. This
‘daisy chain’ allows for only a single wireless connection from
the Raspberry Pi and both devices can communicate with the
Google Cloud Platform.

The first experiment measured the ‘sunny day’ case of user
sessions with a minimum session threshold of 10 seconds. This
experiment yielded an average latency of 146.7 milliseconds
and standard deviation of 92.9 milliseconds. The fastest re-
sponse was 59.5 milliseconds and slowest response time was
531.3 milliseconds. Shown in Figure 3, the experiment lasted
3 minutes with 28 events recorded. The average user session
was 11 seconds and average inactivity was 6 seconds.

From these results, the user session lock allows for more
consistent publishing of events. The Profile Switcher is config-
ured to poll for new messages to acknowledge every second,
so by halting a flood of notifications at once, it allows the
system to quickly respond to incoming messages.

The second experiment measured the rapid response time
with the removal of the minimum session duration. With the
removal of the session lock, there was a larger stream of
unpredictable events. This resulted in an average latency of
370.7 milliseconds and less consistent records with a standard
deviation of 285.9 milliseconds. The fastest response time was
66.3 milliseconds and maximum latency of 997.7 milliseconds.
Shown in Figure 4, the experiment lasted 2 minutes and 30



seconds with 28 events recorded.
By removing the user lock, the subscriber is constantly

processing new messages that adjust the user-interface, which
slows down the response time of the request. With a maximum
response of almost 1 second, the publisher sent 5 requests
within 10 seconds, and due to this, was unable to promptly
acknowledge all of them. The subscriber is only able to process
one message at a time, so that there is not a conflict of
resources. If the subscriber was able to acknowledge two login
requests at the same time, it could potentially crash the system
or show incorrect user data.

The third experiment measured a consistent stream of login
and logout events every 5 seconds. This tests the respon-
siveness of the application with consistent publish events.
On average events were processed within 132.1 milliseconds
with a standard deviation of 53.7 milliseconds. The fastest
response time was 51.1 milliseconds and maximum latency of
277.6 milliseconds. Shown in Figure 5, the experiment lasted
5 minutes and 30 seconds with 68 events recorded.

To stress the system latency, an event was published every
5 seconds and swapped user status. This method proved to
be sufficiently handled by the subscriber, for it had time to
acknowledge each request when it arrived.

VI. CONCLUSION

The purpose of this work was to create a system utilizing
open-source tools to deliver a customizable user interface and
add an additional security layer before accessing sensitive
data. The Smart Mirror uses Facial Recognition to label faces
standing right in front of the device and allows for users
to customize their individual content to interact with voice
control. This product is privacy preserving for it conducts
facial recognition locally, and uses a pre-trained, local wake
word engine to activate the assistant. With Google Cloud
Platform, the mirror can authenticate the user in less than a
second and display their customized interface. The hardware
used for this project poses a competitive price point to similar
products and the software is compatible with many other
devices to lower the overall cost. This project was successful
because it is able to handle voice commands, form intents to
control the screen and volume, and provide almost immediate
responses played back over the speaker.

VII. FUTURE WORK

There are many active developers around the world con-
tributing to the open-source framework, Magic Mirror. De-
velopers are working on new modules that integrate into
the framework, and extend the current functionality of this
project. Many modifications and improvements can be made
to the Smart Mirror implementation by creating a more end-
to-end system that would be easier to maintain and serve
as an acceptable product to bring to market. To extend
functionality, the Firebase Function would need to include the
App Selector trait with Media Playback. This would require
integration with 3rd Party services and generate authorization
tokens to access user data and content on such platforms.

Additionally, the embedded assistant can be swapped with
other virtual assistants such as Amazon Alexa, Apple Siri,
and Microsoft Cortana. This would provide a larger market of
users and functionality to further customization of the device.
The current implementation depends on the Google Home
app to control the device, and an extension of this product
would be a smart phone application to control the device
directly including onboarding new users, customizing the user
interface, and controlling the device.

REFERENCES

[1] Amazon. Alexa Voice Service (AVS) Device SDK, November 2021.
[2] Jide S. Edu, Jose M. Such, and Guillermo Suarez-Tangil. Smart Home

Personal Assistants: A Security and Privacy Review. ACM Computing
Surveys, 53(6):1–36, February 2021.

[3] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith
Cranor. Exploring How Privacy and Security Factor into IoT Device
Purchase Behavior. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pages 1–12, Glasgow Scotland
Uk, May 2019. ACM.

[4] Google. Google Assistant SDK, June 2019.
[5] Brian Janssen. MMM-ProfileSwitcher, January 2017.
[6] Alireza Kenarsari and Ian Lavery. Porcupine, March 2018.
[7] Davis E King. Dlib-ml: A Machine Learning Toolkit. Journal of

Machine Learning Research:4, July 2019.
[8] Lea Schönherr, Maximilian Golla, Thorsten Eisenhofer, Jan Wiele,

Dorothea Kolossa, and Thorsten Holz. Unacceptable, where is
my privacy? Exploring Accidental Triggers of Smart Speakers.
arXiv:2008.00508 [cs], August 2020. arXiv: 2008.00508.

[9] Alex Sikand. MMM-Porcupine, April 2020.
[10] Michael Teeuw. MichMich/MagicMirror, February 2014.
[11] Dujuan Zhang, Jie Li, and Zhenfang Shan. Implementation of Dlib

Deep Learning Face Recognition Technology. In 2020 International
Conference on Robots Intelligent System (ICRIS), pages 88–91, Novem-
ber 2020.

[12] Serena Zheng, Noah Apthorpe, Marshini Chetty, and Nick Feamster.
User Perceptions of Smart Home IoT Privacy. Proceedings of the ACM
on Human-Computer Interaction, 2(CSCW):200:1–200:20, November
2018.


